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 A boundary integral equation method for the simulation of two-dimensional steady
 transonic potential flows is presented .  The method is based on a conservative dif ferential
 full-potential formulation .  The steady two-dimensional formulation is obtained as the
 limiting case of the unsteady three-dimensional one ,  as the iterative method used to obtain
 steady-state results is a pseudo-time-accurate three-dimensional technique .  In the present
 formulation the full-potential equation appears in the form of a nonlinear wave equation
 for the velocity potential .  All the nonlinear terms ,  which are expressed in conservative
 form ,  are moved to the right-hand side ,  and treated formally as nonhomogeneous terms .
 The paper includes a historical review on the development of integral formulations for
 transonic analysis .  Numerical results are obtained for steady two-dimensional transonic
 flows .  Comparisons with existing finite-dif ference ,  finite-element ,  and finite-volume results
 shows a good agreement .  The convergence analysis for an increasing number of grid
 elements reveals a limit behaviour in good agreement with other numerical methods in
 both subcritical and supercritical problems .  Finally ,  we present numerical results to
 demonstrate a remarkable feature of the formulation ,  that is that the transonic numerical
 results are quite insensitive to the geometry of the field volume elements ;  this makes the
 present formulation particularly appealing for optimal design applications .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 A  BOUNDARY INTEGRAL EQUATION METHOD  (BIEM) for the solution of two-dimensional
 transonic flows is presented .  The formulation is based on the work of Iemma (1994)
 which represents an extension to the conservative full-potential model of the integral
 formulation of Morino (1974) for potential flows around aircraft having arbitrary shape
 and motion .  Such a formulation has been used for nonlinear TSP (Transonic Small
 Perturbation) analysis by Tseng & Morino (1982) and Tseng (1983 ,  1984) .  Preliminary
 full-potential results are presented in Morino & Iemma (1993) .

 In the present work ,  the emphasis is on the assessment of the method in the
 two-dimensional analysis ,  through an investigation of the convergence of the solution
 of the integral formulation as the mesh size increases ,  as well as comparisons with
 numerical results obtained with classical CFD (Computational Fluid Dynamics)
 methods (i . e .,  finite-dif ference ,  finite-element ,  and finite-volume) .  Two dif ferent
 implementations are presented for the numerical evaluation of the nonlinear terms .
 Both of them are conservative .  In a first formulation ,  the integral term representing the
 volume nonlinear sources is integrated by parts in order to avoid the evaluation of the
 divergence of  = f  ,  as in Tseng (1983 ,  1984) and in Morino & Iemma (1993) .  In the
 second one ,  the volume integral is discretized in its original form .  In order to capture
 shocks ,  dissipative terms are introduced in the supersonic region of the flow in the
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 form of  artificial compressibility ,  or linear and nonlinear  artificial  y  iscosity ,  or  flux
 upwinding .  Both formulations are applied here to subcritical and supercritical ,  steady
 two-dimensional flows .

 A remarkable feature of the method is that ,  as numerical experiments show ,
 transonic results are quite insensitive to the geometry used for the field volume
 elements .  Specifically ,  nearly identical results are obtained (for a fixed boundary
 surface discretization) using a field discretization generated from dif ferent boundary
 geometries .  Conversely ,  one could use the same field discretization for dif ferent
 boundary geometry ;  this implies that in those applications where repeated calculations
 are required ,  the evaluation of the field-to-field coef ficients (a very expensive portion of
 the algorithm) need not be repeated .  This property makes the present formulation
 particularly appealing for optimal design applications .

 In Section 2 a historical review on the development of numerical simulation of
 transonic flows is presented so as to place the present work in the proper context .
 Section 3 deals with the boundary integral formulation for full-potential unsteady ,
 three-dimensional flows (for the steady ,  two-dimensional formulation is obtained as the
 limiting case of the unsteady three-dimensional one ,  since the iterative method used to
 obtain steady-state results is a pseudo-time-accurate technique) ;  even if the formulation
 may be extended to unsteady flows around bodies in arbitrary motion (see Section 2) ,
 here we make the assumption that the body moves in uniform translation .  The
 treatment of the nonlinearities is also presented in Section 3 .  The numerical
 discretization is briefly outlined in Section 4 ,  whereas ,  the artificial dissipation schemes
 are discussed in Section 5 .  The numerical results for two-dimensional steady-state flows
 are presented in Section 6 ,  and compared with finite-element ,  finite-dif ference ,  and
 finite-volume solutions of both the full-potential and (when applicable) Euler equa-
 tions .  The results of the convergence analysis as well as the field grid insensitivity are
 included in Section 6 .  The theoretical aspects of the present work have been developed
 jointly by the two authors ;  the numerical results have been obtained by the first author .

 2 .  RELATIONSHIP WITH EXISTING WORK

 In the last 20 years ,  the numerical simulation of transonic flows has been one of the
 most active fields of research in Computational Fluid Dynamics (CFD) .  Thus ,  an
 exhaustive review of the work performed is beyond the scope of the present paper .  On
 the other hand ,  the contribution of the present work is better understood within the
 more general framework of CFD .  In this section we present a brief historical review of
 the development of numerical methods for transonic potential flows ,  with emphasis on
 boundary integral formulation considered here .  For completeness ,  we first recall some
 milestones in the development of CFD methods for transonic flows [for reviews in the
 field see Hirsh (1990)] .

 A finite-dif ference solution of the nonlinear equation for the potential in the
 transonic range was first obtained in Murman & Cole (1971) ,  which is to be considered
 a milestone in the development of numerical techniques for the solution of transonic
 flows .  The basic idea of this work is the introduction of a  type - dependent  dif ferencing
 scheme ,  which ensures that the domain of dependence of the finite-dif ference equations
 is closely related to that of the original dif ferential equation .  In order to achieve this ,
 the derivative of the potential in the flow direction is approximated by upwind
 dif ferences within the supersonic region of the field ,  whereas central dif ferences are
 used for the subsonic points .  This original idea has been extended by Murman (1974)
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 to conservative TSP ,  and to the full-potential equation by Jameson (1974 ,  1975) ,  for
 both the nonconservative and the conservative forms of the equation .  A dif ferent
 interpretation of the artificial dissipation terms results if one includes the dissipative
 ef fects only in the evaluation of the density ;  this point of view ,  first proposed by Eberle
 (1977) and generalized by Hafez  et al .  (1978) and Holst & Ballhaus (1979) ,  is known as
 artificial compressibility ,  and has been successfully applied in the past to the
 finite-element solution of the full-potential equation .  Another approach to the
 treatment of the hyperbolic region of the domain is based on the modification of the
 mass flux in the field by means of an upwind biasing evaluation .  This class of
 dissipation schemes derives from an accurate reformulation of the artificial-dissipation
 concepts for developing monotone converging schemes for the numerical solution of
 the Euler equation .  The first applications of this technique are due to Engquist &
 Osher (1980) for the small-disturbance equation ,  and to Osher (1982) for the
 full-potential equation .

 Next ,  we turn our attention on the transonic-flow analysis based on boundary
 integral methods .  Boundary integral equations were used for the analysis of transonic
 aerodynamics in the pioneering work of Oswatitsch (1950) [which precedes by over
 20 years the finite-dif ference work of Murman & Cole (1971)] and Spreiter & Alskne
 (1954) ,  for steady ,  two-dimensional ,  transonic flows .  Nixon (1974 ,  1978) presents a
 perturbation scheme for the solution of unsteady two-dimensional and steady three-
 dimensional flows ,  respectively .  In Piers & Sloof (1979) a shock capturing integral
 formulation is applied to the TSP model .

 Next ,  consider the formulation used here .  This is based on that proposed by Morino
 (1974) and implemented by Tseng & Morino (1982) for the TSP case .  This formulation
 was applied by Tseng (1983 ,  1984) to steady two- and three-dimensional flows .
 Applications closely related to the approach of Tseng & Morino (1982) ,  have been
 presented by Iemma  et al .  (1991) who present a validation for three-dimensional
 unsteady flows .  In the above papers ,  a simple upwind-dif ference scheme is used for the
 evaluation of  Û f  / Û x  in the field sources for the supersonic points of the flow field [akin
 to the type-dependent scheme of Murman & Cole (1971)] .  Conservative artificial
 dissipation schemes are introduced in Morino & Iemma (1993) and further developed
 in Iemma (1994) and in Iemma & Morino (1994) .  These papers introduce the
 dissipative ef fects in the full-potential equation in the form of linear and nonlinear
 artificial  y  iscosity ,  as well as  artificial compressibility  or  flux - upwinding .  The numerical
 results are in good agreement with other CFD methods (finite dif ferences ,  finite
 volumes ,  and finite elements) .  Preliminary results obtained in aeroelastic applications
 using the full-potential integral formulation are included in Morino  et al .  (1994)
 whereas applications to the aerodynamic and aeroacoustic analysis of helicopter rotors
 in hover are presented in Morino  et al .  (1992) ,  Iemma  et al .  (1993) and Gennaretti  et al .
 (1995a , b) .

 The above formulations are oriented towards engineering applications .  Here ,  we
 examine in-depth some properties of the methodology .  Specifically ,  we present a
 systematic analysis of the convergence as the number of elements increase (with
 converged solution properties obtained by extrapolation) ,  thereby obtaining a mean-
 ingful comparison with existing results .  Also ,  the convergence of the iterative scheme is
 addressed carefully .  Finally ,  we present novel results regarding the issue of field-grid
 independence (which makes the methodology particularly attractive for design applica-
 tions ,  as explained above) .

 Finally ,  for completeness ,  consider some related and independently developed BEM
 formulations .  As mentioned above ,  a steady full-potential formulation has been
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 proposed by Sinclair (1986 ,  1988) and applied to two-dimensional and three-
 dimensional configurations ,  respectively .  In contrast to Tseng & Morino (1982) (and all
 the subsequent papers cited above) where the field sources include exclusively
 nonlinear terms ,  in Sinclair (1986 ,  1988) the field sources include all the compressibility
 terms (linear and nonlinear) ;  this implies that the dif ferential operator for the boundary
 integral formulation of Tseng & Morino (1982) is that of the wave equation ,  whereas
 for Sinclair (1986 ,  1988) it is the Laplacian and ,  as a consequence ,  field integrals are
 required even for the linear case (subsonic flows) .  A shock-capturing shock-fitting
 (SCSF) scheme has been introduced by Kandil & Hu (1988) ,  who use an integral
 formulation similar to that of Sinclair (1986 ,  1988) for the shock capturing part of the
 algorithm ,  whereas a shock fitting procedure is introduced by evaluating the shock
 strength and orientation using the Rankine – Hugoniot relations ;  the integral equation is
 modified by introducing a source distribution on the shock surface ,  with intensity
 proportional to the local shock strength .  The work of Kandil & Hu (1988) also includes
 the solution of the Euler equations by coupling the integral formulation with a finite
 dif ference solution of the Euler equation within a domain surrounding the shock .  A
 formulation closely related to that of Sinclair (1988) [i . e .,  including all the compres-
 sibility ef fects as a sources distribution in the floe field] is presented by Ro ̈  ttgermann &
 Wagner (1995a ,  b) ,  and Zhang  et al .  (1995) who extend this type of approach to the
 analysis of helicopter rotors in the transonic regime ,  including the ef fects of the
 rolled-up wake geometry .  They use a full-potential equation written in nonconservative
 form ;  this is not to be considered a strong limitation ,  since ,  in helicopter applications ,
 shock waves are typically weak .  Indeed ,  their work represents probably the most
 advanced application of those integral formulations that are based on the Laplacian .

 3 .  FULL POTENTIAL INTEGRAL FORMULATION

 Consider first the dif ferential formulation of the problem [for details see Morino &
 Iemma (1993) ,  or Morino (1993)] .  The equation governing the motion of an isentropic
 irrotational flow is the full-potential equation ,  which is obtained by combining the
 conservative form of the continuity equation with Bernoulli’s theorem for isentropic
 potential compressible flow ,  and taking into account the isentropic density – enthalpy
 relation .  In a frame of reference rigidly connected with the body (BFR) this is given by

 = 2 f  2
 1

 a 2
 ̀

 d 2
 B f

 dt 2  5  s  ,  (1)

 where  s   represents all the nonlinear terms ,  whereas  d B  / dt  : 5  Û / Û t  2  v B  ?  =   is the time
 derivative written in the BFR (where  v B   is the velocity of the point of the BFR) ,  i . e .,
 following a point fixed in the air frame of reference .  The expression for  s   is

 s  5  =  ?  b  1
 Û b ̂

 Û t
 ,  (2)

 where

 b  5 S 1  2
 r

 r ̀
 D = f  2  v B b ̂  and  b ̂  5

 r

 r ̀

 1
 1

 a 2
 ̀

 d B f

 dt
 ,  (3)

 with  r  / r  ̀    obtained from the Bernoulli theorem as  r  / r  ̀  5  [1  2  1 / h  ̀  ( d B f  / dt  1
 y  2 / 2)] 1/ g 2 1 .  Dif ferent expressions (small-disturbance ;  nonconservative) for the non-
 linear terms  s   are discussed in Morino & Iemma (1993) .
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 The boundary conditions complete the dif ferential problem .  These are (Morino &
 Iemma 1993 ;  Morino 1993) the impermeability of the body surface  6 B  ,  or

 Û f

 Û n
 5  v B  ?  n ,  for  x  on  6 B  ,  (4)

 and  f  5  0 at infinity .  In addition ,  we have the conditions of impermeability and of
 pressure continuity across the wake surface ,   6 W .  These yield ,  for  x  on  6 W  ,

 D S Û f

 Û n
 D  5  0 ,  (5)

 D W

 Dt
 ( D f  )  5  0 ,  (6)

 with  D W  / Dt  : 5  Û / Û t  1  v W  ?  = ,  where  v W   is the velocity of a point of the wake .  Equation
 (6) states that  D f   is constant in time following a wake point  x W   and equal to the value
 it had when  x W   left the trailing edge .  This is obtained from the condition that
 D f W  5  D f B   at the trailing edge .  In addition ,  we assume homogeneous initial
 conditions .

 The integral formulation for the above dif ferential problem is outlined in the
 following .  In the present paper we deal with applications to fixed-wing analysis ;  thus ,
 the integral equation presented is limited to bodies in uniform translation .  In this case
 v B  5  h 2 U ̀  ,  0 ,  0 j   and  d b  / dt  5  Û / Û t  1  U ̀  Û / Û x .

 The fundamental solution  G  for equation (1) is the solution of the problem

 = 2 G  2
 1

 a 2
 ̀

 d 2
 B f

 dt 2  G  5  d  ( x  2  x * ) d  ( t  2  t * ) ,  (7)

 where  d   denotes the Dirac delta function .  The ‘‘initial’’ conditions and the boundary
 condition at infinity associated with the above problem are ,  respectively ,   G ( x ,  ̀  )  5
 G ~  ( x ,  ̀  )  5  0 ,  and  G (  ̀  ,  t )  5  0 .  The expression of  G  for  M ̀  5  U ̀  / a  ̀  ,  1 (subsonic
 undisturbed flow) flows is (Morino 1974)

 G ( x ,  x * ,  t ,  t * )  5
 2 1

 4 π r b

 d  ( t  2  t *  1  θ  ) ,  (8)

 where  r b ( x ,  x * )  5  4 M 2
 ̀  ( x  2  x * ) 2  1  b  2 r 2  and  θ  ( x ,  x * )  5  [ r b  1  M ̀  ( x  2  x * )] / a  ̀  b  2  with

 b  5  4 1  2  M  2
 ̀    and  r  5  i  r  i  5  i  x  2  x *  i  .

 The integral formulation of the problem is obtained by multiplying equation (1) by  G
 and equation (7) by  f  ,  subtracting ,  and integrating in time and over the entire domain
 9  .  Applying the Gauss theorem ,  using the boundary condition at infinity for  G  and  f  ,
 integrating with respect to time (taking into account the initial conditions on  f   and  G ) ,
 and introducing the Prandtl-Glauert variables ,   x 0  5  x  / b  , y 0  5  y , z 0  5  z ,  yields

 f  ( x 0 *
 ,  t * )  5  T

 6 B 0

 F G 0
 Û f

 Û n 0
 2  f

 Û G 0

 Û n 0
 1

 Û f

 Û t
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 Û θ ̂  0
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 G θ  0
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 2  E E
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 F D f
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 2  D f ~  G 0

 Û θ ̂  0

 Û n 0
 G θ  0

 d 6 0  1 E E E
 9 0

 G 0 [ s  ] θ  0  d 9 0 ,  (9)

 where  G 0  5  2 1 / 4 π r 0  ,  with  r 0  5  i  x 0  2  x 0 *
 i  ,  whereas [ .  .  . ] θ  0  denotes evaluation at the
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 retarded time  t  5  t *  2  θ  0  ,  with  θ  0  5  [ r 0  1  M ̀  ( x 0  2  x 0 *
 )] / a  ̀  b  .  Moreover ,   6 B 0

  and  6 W 0
  are

 images of the surfaces of the body and of the wake in the Prandtl-Glauert space ,
 whereas  Û / Û n 0  denotes the corresponding normal derivative ,  and  θ ̂  0  5  [ r 0  2  M ̀  ( x 0  2
 x 0 *

 )] / a  ̀  b .  Also ,   s  5  = 0  ?  b 0  1  Û b ̂  / Û t  with  b 0  5  ( b x  / b  ) i  1  b y j  1  b z k .
 If  s  5  0 (i . e .,  in the linear subsonic case) and  x 0*  P  9  ,  equation (9) is an integral

 representation for  f  ( x 0 *
 ,  t * ) as a function of  f  ,  Û f  / Û n 0  on  6 B 0

  and of  D f   on  6 W 0
 .  On

 the other hand ,  if  x 0 *
  is on  6 B  ,  equation (9) represents a compatibility condition

 between  f   and  Û f  / Û n 0  on  6 B 0
  and  D f   on  6 W 0

  for any function  f   satisfying equation
 (1) .  Since  Û f  / Û n  is known from the boundary conditions ,  and  D f   from the preceding
 time history ,  equation (9) corresponds to a boundary integral equation for  f .

 In the nonlinear case ( s  ?  0) ,  the method of solution is similar .  Indeed ,  we take
 advantage of the evolution of nonlinear terms at retarded times and hence only the
 current value of  s   needs to be evaluated (by numerical dif ferentiation) from  f   in the
 field .

 Two dif ferent approaches are introduced for the numerical evaluation of the volume
 integral of equation (9) .  In the first one [following Tseng (1983)] an integration by parts
 of the nonlinear terms integral is introduced ,  so as to avoid the evaluation of the
 divergence operator .  Specifically ,  considering that [ = 0  ?  b 0 ]

 θ  0  5  = 0  ?  [ b 0 ]
 θ  0  1

 [ Û b 0 / Û t ] θ  0  ?  = θ  0   and applying the divergence theorem ,  we obtain

 E E E
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 θ  0  G 0  d 6 0  2 E E E

 9 0
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 θ  0  ?  = 0 G 0  d 9 0

 1 E E E
 9 0

 F Û b ̂

 Û t
 1

 Û b 0

 Û t
 ?  = 0 θ  0 G θ  0

 G 0  d 9 0  (10)

 This approach ,  under the assumption of small perturbation ,  has been applied in the
 past to the analysis of two- and three-dimensional unsteady transonic flows around
 fixed and rotary wings (Iemma  et al .  1991 ;  Morino  et al .  1992) .  Here ,  the same
 approach is applied to the solution of the full-potential equation for two-dimensional
 steady problems ,  because ,  as mentioned above ,  the steady two-dimensional formula-
 tion is obtained as the limiting case of the unsteady three-dimensional one ,  since the
 iterative method used to obtain steady-state results is a pseudo-time-accurate
 technique .

 In the second approach [more recent ,  introduced by Iemma (1994)] the volume
 integral is discretized in its original form .  This second approach appears to be
 computationally more convenient than the first one ,  for reasons indicated in the next
 section .

 4 .  NUMERICAL DISCRETIZATION

 In order to solve the problem numerically ,  the above integral equation is discretized
 using a zeroth-order boundary-element formulation .  The surface of the body is divided
 into  M  elements ,   6 m  ,  that of the wake into  N  elements ,   6 n   and the fluid volume into  Q
 volume elements ,   9 q .  Using the collocation method ,  and setting the collocation points
 at the centers of elements ,  we obtain the discretized version of equation (9) ,  the form
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 of which depends on the formulation adopted for the field integral .  Specifically ,
 combining equations (10) and (9) and discretizing yields

 f k ( t )  5  O M
 m 5 1

 B k m [ χ ä  m ] θ  0 k m  1  O M
 m 5 1

 C k m [ f m ] θ  0 k m  1  O M
 m 5 1

 D k m [ f ~  m ] θ  0 k m

 1  O N
 n 5 0

 F k n [ D f n ] θ  0 k n  1  O N
 n 5 1

 G k n [ D f ~  n ] θ  0 k n  1  O Q
 q 5 1

 H k q  ?  [ b 0 q
 ] θ  0 k q

 1  O Q
 q 5 1

 H #  k q  ?  [ b ~  0 q
 ] θ  0 k q  1  O Q

 q 5 1
 H k q [ b ̂ ~  q ] θ  0 k q  ,  (11)

 where  χ ä  m  5  Û f  / Û n 0  2  n 0 ( x m )  ?  b ä  0 ( x m ) ,  and [ .  .  . ] θ  0 k m
   denotes evaluation at the retarded

 time  t  2  θ  0 k m
 ;  whereas discretizing equation (9) in its original form yields

 f k ( t )  5  O M
 m 5 1

 B k m [ χ m ] θ  0 k m  1  O N
 m 5 1

 C k m [ f m ] θ  0 k m

 1  O M
 m 5 1

 D k m [ f ~  m ] θ  0 k m  1  O N
 n 5 1

 F m [ D f n ] θ  0 k n

 1  O N
 n 5 1

 G k m [ D f ~  n ] θ  0 k m  1  O Q
 q 5 1

 H k q [ s  0 1
 ] θ  0 k q  ,  (12)

 with [ s  0 ]
 θ  0  <  =  ?  [ b 0 ]

 θ  0  1  [ Û b ̂  0 / Û t  1  = θ  0  ?  Û b 0 / Û t ] θ  0  ,  where  =  ?  [ b 0 ]
 θ  0  ,  the mean value of

 =  ?  b 0  on each element ,  is calculated as the flux of  b 0  through the boundary  Û 9 q

 =  ?  [ b 0 ]
 θ  0 u q  5

 1
 9 q

 E E E
 9 q

 =  ?  [ b 0 ]
 θ  0  d 9  5

 1
 9 q

 T
 Û 9 q

 ?  [ b 0 ]
 θ  0  ?  n  d 6  ,  (13)

 n  being the unit normal to the surface  Û 9 q .  Note that equation (11) requires the
 evaluation of seven coef ficients for each pair  kq  (two vector quantities plus a scalar
 one) ,  whereas only one single scalar is needed in equation (12) .  Considering that the
 number of nonlinear coef ficients is proportional to the square of the number of
 elements in the field ,  we see that equation (12) is more convenient from a numerical
 point of view ,  in terms of both computer time and storage space .

 5 .  ARTIFICIAL DISSIPATION

 In order to capture shocks ,  the present formulation utilizes the addition of dissipative
 ef fects in the supersonic region of the flows .  The conservative artificial dissipation
 schemes presented here are extensions of the approach in Morino & Iemma (1993) for
 dif ferent forms of the dissipative terms .  Four dif ferent schemes are considered and
 applied to the boundary integral equation presented above .  When the nonlinear field
 integral is integrated by parts ,  the artificial dissipation is included in the form of linear
 and nonlinear  artificial  y  iscosity ,  as well as  artificial compressibility ,  whereas a  flux
 upwinding  technique is applied in the evaluation of  b 0  ?  n  on  Û 9 q  ,  when the field
 sources are discretized in their original form .  All these concepts are adaptations to the
 boundary integral equation method of existing CFD techniques .



 U .  IEMMA AND L .  MORINO 254

 5 . 1 .  A RTIFICIAL  V ISCOSITY

 A technique for including dissipative ef fects in the full-potential equation deals with the
 addition of artificial viscous terms within the supersonic region of flow .  These terms
 should be proportional to upwind derivatives of the velocity in the local direction of the
 flow .  This technique could be considered as a direct evolution of the original
 type - dependent dif ferencing ,  introduced by Murman & Cole (1971) for the non-
 conservative TSP equation ,  extended to conservative TSP by Murman (1974) ,  and to
 the full-potential equation by Jameson (1974 ,  1975) for both the nonconservative and
 the conservative forms of the equation .  The adaptation to the present boundary
 integral equation formulation is considered in two dif ferent ways .  In the first one ,  the
 viscous correction is introduced at the level of the evaluation of the  x -component of the
 velocity .  The modified quantity has the form

 u ̃  5  f  c
 x  2  D s

 Û

 Û s
 S m

 Û f

 Û x
 D  ,  (14)

 where  f  c
 x   indicates the centered finite dif ference approximation for the  x -derivative of

 the potential ,  and  m  ( M ) represents the switching function that activates the dissipation
 terms where  M  .  1 .  The typical expression suggested in the literature for  m   is
 m  ( M )  5  C  max[0 ,  1  2  M 2

 c / M  2 ] ,  where  M c   is a  cut - of f  Mach number ,  and  C  is a constant
 (the use of  M c   prevents instabilities at the sonic line due to the discontinuity of the
 slope of the function  m  ( M )  P  # 0 ,  by moving the commutation slightly below the sonic
 point) .  A new expression for the switching function was introduced by Iemma (1994) in
 order to achieve the same stability with  M c  5  1 .  The function  m  ( M )  P  #  ̀    is

 m  ( M )  5
 C

 1  1  e 2 l ( M 2 M 0 )
 ,  (15)

 where  l   controls the slope of the function at  M  5  M 0  .  The expression of  u ̃    in equation
 (14) is introduced in the Bernoulli theorem (to evaluate  r  / r  ̀  ) ,  as well as in equation
 (2) .  Thus ,  the dissipative term added to the inviscid nonlinear term is nonlinear .

 5 . 2 .  A RTIFICIAL  C OMPRESSIBILITY

 Including the dissipative ef fects in the calculation of the density ,  results in a dif ferent
 interpretation of the artificial dissipation terms .  This point of view ,  first proposed by
 Eberle (1977) ,  generalized by Hafez  et al .  (1978) and Holst & Ballhaus (1979) ,  and
 known as  artificial compressibility ,  has been successfully applied in the past to the finite
 element solution of the full-potential equation .  In adapting this approach to the
 boundary integral formulation ,  we consider the modified density

 r ̃  5  r  2  m  ( M ) D s
 Û r

 Û s
 ,  (16)

 where  s  is the arc-length in the streamwise direction .  The dissipative ef fects are
 introduced by substituting  r   with  r ̃    in equation (3) .

 5 . 3 .  A RTIFICIAL  M ASS  G ENERATION

 In the third approach ,  the artificial viscosity term is introduced as an artificial mass-flux
 in the evaluation of the nonlinear source terms

 s ̃  5  s  1  D s
 Û

 Û x
 F m

 Û

 Û s
 S Û f

 Û x
 D G .  (17)
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 After integration by parts ,  the above expression assumes the form  b ̃  k  5  b k  2
 D s m k  Û u  / Û s u k  i ,  where  i  represents the unit vector of the  x  direction .  The latter
 approach yields a linear artificial viscous term .  This peculiarity seems to have a
 favorable influence on the stability of the iteration process .

 5 . 4 .  F LUX  U PWINDING

 If the nonlinear terms are not integrated by parts ,  the evaluation of  =  ?  b  is reduced to
 the evaluation of the flux of  b  through the boundary of each element  9 q .  The
 introduction of dissipative terms in such a formulation is accomplished by using a
 so-called  flux - upwinding  scheme .  This class of dissipation schemes ,  derived from an
 accurate reformulation of the artificial dissipation concepts ,  yields monotone converg-
 ing schemes for the numerical solution of the Euler equation .  Early applications of this
 technique are due to Engquist & Osher (1980) for the small-disturbance equation ,  and
 to Osher (1982) for the full-potential equation .  A very general form for these schemes
 can be presented (for two-dimensional flows) by denoting with  f i 2 1/2 ,j , f i 1 1/2 ,j , f i ,j 1 1/2 ,
 f i ,j 2 1/2   the mass flux flowing through the four faces of the two-dimensional element
 surrounding the control point  x i j  ,  and by identifying  i  as the index following the local
 stream direction .  Dissipative ef fects are introduced at supersonic points by means of
 the modified flux  f  d

 i Ú 1/2 ,j :

 f  d
 i Ú 1/2 , j  5  f i Ú 1/2 , j  2  D i Ú 1/2 , j  ,  (18)

 where  D  represents a general form of dissipation .  In the present formulation we have
 f i Ú 1/2 ,j  5  b  ?  n u i Ú 1/2 ,j ,  and for the additive term  D  a first-order expression is used .  We
 obtain

 f  d
 i Ú 1/2 ,j  5  f i Ú 1/2 ,j  2  m  i Ú 1/2 ,j

 Û f
 Û s
 U

 i Ú 1/2 ,j
 D s  (19)

 6 .  NUMERICAL RESULTS

 The formulation presented above is applied to the analysis of steady two-dimensional
 transonic flows .  Particular emphasis is given to the validation of the algorithm in
 subcritical and supercritical regimes ,  through comparisons with existing numerical
 solutions of the full-potential and Euler equations .  Indeed ,  for subcritical flows the
 full-potential model is exactly equivalent to the complete Euler model ,  since no
 entropy or vorticity sources (such as strong shock waves) are present in the field .
 Moreover ,  if only weak shock waves occur ,  comparisons between the two formulations
 are still meaningful ,  since the entropy jump and vorticity introduced by the shock
 remain negligible .

 The applications presented in the following deal with the two approaches presented
 for the treatment of the nonlinear terms (with and without the integration by parts of
 the field-source term) .  Note that the steady solution is obtained by marching in time ,
 and that a two-dimensional problem is approximated by a three-dimensional one with a
 very high aspect ratio .  The results may be divided into five groups .  Two-dimensional ,
 steady ,  subcritical (no shock waves) problems are presented first ,  and compared to
 numerical solutions of the Euler equation ,  in order to assess the algorithm in the
 absence of dissipation schemes .  Two-dimensional steady supercritical problems are then
 analysed ;  comparisons with existing numerical solutions of the full potential and Euler
 equation are presented ,  including the validation of the dissipation schemes described
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 above .  Then ,  the ef fects of the dissipation schemes and of the grid type are considered .
 Finally ,  some results demonstrating the independence of the solution from the field
 grid geometry are presented (as mentioned above ,  this feature is highly desirable in
 those applications where repeated calculations are required ,  such as optimal design of
 airfoil shapes) .

 6 . 1 .  S UBCRITICAL  F LOWS

 In order to validate the nonlinear potential model ,  the present method has been
 applied to two-dimensional subcritical cases ,  and compared to numerical solutions of
 the Euler equation obtained by Lerat & Sides (1986) and Dadone (1986) .  Two dif ferent
 tests are considered :  the flow around a circular cylinder at  M ̀  5  0 ? 38 ,  and a NACA
 0012 airfoil at  M ̀  5  0 ? 63 with angle of attack  a  5  2 8 .  These test cases are chosen just
 below the critical (i . e .,  sonic) conditions ,  in order to ensure a strong influence of the
 nonlinear terms ,  and ,  at the same time ,  to ensure the isentropicity of the flow .  The
 comparison of the pressure distributions obtained for the two test cases confirms the
 accuracy of the prediction of the present method .

 Figure 1 depicts the pressure coef ficient distribution on the surface of the cylinder at
 M ̀  5  0 ? 38 .  The solution of the present method is obtained using an O-type grid for the
 evaluation of the nonlinear field sources ,  with 60  3  15 volume elements .  The solution
 for the nonlinear potential problem is compared to that for a linear potential one and
 to both Euler solutions .  The prediction of the nonlinear boundary integral formulation
 shows quite a good agreement with both Euler solutions .  The comparison with the
 linear potential solution confirms the strong influence of the nonlinear terms .  The
 convergence of the iteration scheme appears to be very fast ,  as shown in Figure 2 .  The
 time history of the quantity  u s n 1 1  2  s n u / u s  1 u   is presented ,  where  n  denotes the iteration
 index .  As we will see ,  the convergence rate appears to depend upon the regularity of
 the computational mesh .  Nonuniform meshes require a higher number of iterations to
 reach convergence .  Indeed ,  a nonuniform  C -type grid is used for the test case of
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 Figure 1 .  Pressure coef ficient distribution on the surface of a unit circle at  M ̀  5  0 ? 38 :  — d — ,  BEM linear
 potential ;  — h — ,  BEM non-linear potential ;  — s — ,  Euler solution (Lerat & Sides 1986) ;  —  1  — ,  Euler

 solution .  (Dadone 1986) .
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 Figure 2 .  Time history of the iterative procedure .  Test case of Figure 1 .

 Figures 4 and 5 (NACA 0012 airfoil at  M ̀  5  0 ? 63 and angle of attack  a  5  2 8 ) ,  with
 40  3  15 field elements .  The solution is still very accurate in terms of pressure
 distribution when compared to the Euler solutions ,  but the steady state is reached after
 a higher number of steps with respect to the uniform grid solution .  Nevertheless ,  this
 number remains considerably lower than that required by other CFD methods .

 In order to evaluate the rate of convergence of the numerical solution as the number
 of elements increases ,  the results obtained with dif ferent mesh sizes have been
 compared to the reference numerical solutions of the Euler equations .  Results obtained
 with the convergence analysis are presented in Figures 3 and 6 .

 The parameter used for the non-lifting flow around the cylinder is the local value of
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 Figure 3 .  Convergence of the maximum value of the  C p   for the case of Figure 1 ,  for increasing number of
 grid elements ,   N ( h  5  1 / N ) :  — s — ,  BEM nonlinear potential ;   h ,  Euler solution (Lerat & Sides 1986) ;   d ,

 Euler solution (Dadone 1986) .
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 Figure 4 .  Pressure coef ficient distribution on a NACA 0012 airfoil at  M ̀  5  0 ? 63 ,  and angle of attack
 a  5  2 8 :   3  ,  BEM linear potential ;  —— ,  Euler solution (Lerat & Sides 1986) ;  — s ,  BEM nonlinear ,  equation

 (10) ;  — d — ,  BEM nonlinear ,  equation (13) .

 pressure coef ficients on the body at  θ  5  π  / 2 .  The boundary integral solution converges
 to a value close to that predicted by Lerat & Sides (1986) .  The slight dif ference with
 respect to Dadone (1986) (limited within the 3% of the local value of the pressure
 coef ficient ,  Figure 1) may be due to the fact that such a solution is af fected ,  as stated by
 that author ,  by a numerical production of vorticity ,  even when the flow is potential .

 The same analysis has been performed for a lifting flow around a NACA 0012 airfoil .
 In this case ,  the parameter used to analyse the convergence of the integral solution is
 the lift coef ficient .  When we focus our attention to an integral quantity ,  such as the lift
 coef ficient ,  the local small dif ferences between the two reference Euler solutions totally
 disappear ,  Figure 6 (the production of spurious vorticity in the reference solution is
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 Figure 5 .  Time history of the iterative procedure .  Test case of Figure 4 .
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 Figure 6 .  Convergence of the value of the lift coef ficient the  C L   for the case of Figure 4 ,  for increasing
 number of grid elements ,   N ( h  5  1 / N ) :  —  1  — ,  BEM nonlinear potential ,  equation (10) ;  —  3  — ,  BEM
 nonlinear potential ,  equation (13) ;  — h — ,  Euler solution (Lerat & Sides 1986) ;  — h — ,  Euler solution

 (Dadone 1986) .

 limited to the region where the local Mach number approaches unity) .  In the lifting
 case ,  presented in Figure 2 ,  the boundary integral solution converges to a value in
 excellent agremeent with both Euler solutions ,  and this is true for both numerical
 treatments of the nonlinear-term integral .

 6 . 2 .  S UPERCRITICAL  F LOWS

 The present boundary integral method is capable of capturing sharp shocks ,  when they
 occur .  Figure 7 depicts the pressure distribution on the surface of a cylinder at
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 Figure 7 .  Pressure coef ficient distribution on the surface of a unit circle at  M ̀  5  0 ? 5 :  —  1  — ,  present
 method ,  O-grid ,  50  3  15 ;  — s — ,  present method ,  O-grid ,  60  3  20 ;  — h — ,  full-potential finite-volume

 solution (Salas 1982) .
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 Figure 8 .  Time history of the iterative procedure for the convergence of  s .  Test case of Figure 7 :  — s — ,
 O-grid ,  50  3  15 ;  —  1  — ;  —  2  — ,  O-grid ,  60  3  20 .

 M ̀  5  0 ? 5 .  The integral solution for two dif ferent mesh sizes is compared to finite
 volume full-potential solution due to Salas (1982) .  In this particular case ,  no Euler
 solutions are considered as reference results ,  since the strength of the shock yields a
 strong entropy jump ;  in this condition ,  the potential and Euler model are no longer
 comparable .  The discontinuity in pressure predicted by the integral method appears as
 a jump ,  confined within one single element .  The agreement with the finite – volume
 result is quite good in terms of shock position and intensity .  Note that the convergence
 of the iteration to the steady-state solution is very fast and monotonic (Figure 8) .

 6 . 3 .  E FFECT OF THE  G RID

 Next ,  in order to study the ef fect of the grid type ,  we consider a non-lifting NACA
 0012 airfoil at  M ̀  5  0 ? 82 .  An H-type mesh ,  stretched and not uniformly distributed is
 used in the computation ;  the number of field elements is 50  3  20 ,  and equations (14)
 and (18) are used for the artificial dissipation scheme .  In order to clarify the issue of
 the sharpness of the shock ,  the velocity potential distributions obtained with two
 boundary integral approaches are presented in Figure 9 ;  the shock appears as a sharp
 discontinuity for the potential slope .  This sharpness is partially lost because of the
 smearing introduced by the numerical discretization used to evaluate the pressure from
 the potential .  In Figure 10 the pressure distribution is compared to finite volume
 solution of both full-potential and Euler equations (in this case the comparison with the
 Euler solution is meaningful ,  because the shock is relatively weak and hence the
 entropy jump introduced by the shock is negligible) .  Note that the pressure-coef ficient
 distribution obtained using equation (12) reveals ,  after the sonic point ,  some
 dif ferences with respect to the reference results .  This lack of accuracy ,  confined within
 the supersonic region of the domain ,  may be due to the dif ferent impact of the artificial
 dissipation schemes used in the two formulations [see ,  e . g .,  Iemma (1994)] .  The
 convergence rate to the steady state (Figure 11) is lower than in the preceding case (in
 our experience the H-type grid ,  used for these results ,  appears to yield the lowest rate
 of convergence of the iteration scheme) .
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 Figure 9 .  Velocity potential distribution on a NACA 0012 airfoil at  M ̀  5  0 ? 82 ,  and angle of attack  a  5  0 8 :
 — s — ,  present method ,  equation (10) ;  — d — ,  present method ,  equation (13) .

 In order to overcome this problem ,  a new grid geometry has been introduced for the
 calculation of the nonlinear field sources .  The ef fects of the new geometry are shown in
 Figures 12 and 13 .  The first picture depicts the pressure distribution for the same test
 case of Figure 10 .  The introduction of the C-type grid allows for the use of a much
 higher number of surface elements ,  and allows for the convergence analysis of the
 method also in the supercritical range (with the H-type field grid ,  the convergence of
 the iterative procedure was very dif ficult with more than 45 panels along the chord) .
 The solution of Figure 12 reveals a much more satisfactory behaviour in the vicinity of
 the shock ,  when compared to that obtained with the H-type grid (Figure 10) .  In
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 Figure 10 .  Pressure coef ficient distribution on a NACA 0012 airfoil at  M ̀  5  0 ? 82 ,  and angle of attack
 a  5  0 8 :   — d — ,  present method ,  equation (10) ,  H-grid 35  3  10 ;  — s — ,  present method ,  equation (13) ,  H-grid
 33  3  10 ;  —  3  — ,  full-potential finite-volume solution [Salas ,  from Hirsh (1990)] ;  —  1  — ,  euler finite-volume

 solution [Salas ,  from Hirsh (1990)] .
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 Figure 11 .  Time history of the iterative procedure .  Test case of Figure 10 .

 addition ,  the rate of convergence is higher ,  and the convergence history of the
 nonlinear iterative process (Figure 13) is smoother .  The nonlinear iterative process
 remains stable for much finer meshes ,  making possible the convergence analysis of the
 method also in the transonic range .

 6 . 4 .  C ONVERGENCE OF  S HOCK  L OCATION

 The parameter used to assess convergence in the supercritical analysis is the position of
 the shock along the chord of a NACA 0012 airfoil at  M ̀  5  0 ? 82 .  The reference result is
 obtained by a Jameson-type scheme using a finite-volume formulation for the
 full-potential model .  The limit value for the shock position predicted by the BIEM
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 Figure 12 .  Pressure coef ficient distribution on a NACA 0012 airfoil at  M ̀  5  0 ? 82 ,  and angle of attack
 a  5  0 8 :   — d — ,  present method ,  equation (10) ,  C-grid 70  3  20 ;  —  3  — ,  full-potential finite-volume solution

 [Salas ,  from Hirsh 1990] .
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 Figure 13 .  Time history of the iterative procedure .  Test case of Figure 12 .

 formulation is obtained by means of extrapolation of the solution for the number of
 grid elements  N  tending to infinity .  Specifically ,  the position of the shock for four
 dif ferent mesh sizes has been obtained by means of a rational function extrapolation of
 the potential in the vicinity of the shock ,  as shown in Figure 14 .  [The shock profile
 appears to be smooth as in a viscous shock [see ,  e . g .,  Serrin (1959)] maybe because
 of the artificial viscosity ;  thus the smoothed points are not utilized in the extrapolation
 procedure . ] The values of the position of the shock obtained with the above procedure
 have been used as the basis of a Richardson extrapolation (see ,  e . g .,  Press  et al .  1986)
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 Figure 14 .  Shock position estimation from the velocity potential distribution :   s ,  value of  f   computed at
 the control points ;   –  –  –  – ,  rational function extrapolation of the potential across the shock .
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 Figure 15 .  Extrapolation of the shock position for  N  5  ̀    ( h  5  0) .

 in order to evaluate the limit solution for  h  5  0 (see Figure 15) .  In Figure 16 ,  the result
 of the convergence analysis ( x s h  5  0 ? 6608) has been compared with a fine grid volume
 solution obtained with the finite-volume code FLO36 .  Note that the reference solution
 has been obtained with a mesh size of 192  3  64 ,  whereas the grids used for the
 extrapolation of the BEM solutions are ,  respectively ,  40  3  5 ,  50  3  10 ,  60  3  20 ,  and
 70  3  30 .  The limit solution of the BEM method appears to be in excellent agreement
 with the finite volume solution .

 6 . 5 .  D ISSIPATION  S CHEMES

 Next ,  consider the ef fects of additional dissipation schemes .  As mentioned above ,  in all
 the results presented the dissipative ef fects are introduced in the form of  nonlinear
 artificial  y  iscosity  for the scheme in equation (11) ,  and using the  flux - upwinding
 technique ,  for that of equation (12) .  Two additional schemes have been applied to
 equation (11) ,  in order to verify the applicability to a boundary integral formulation of
 concepts inspired by other CFD methods .  In particular ,  dissipation is included as
 artificial compressibility ,  or in the form of  linear artificial  y  iscosity .

 The results are presented in Figure 17 .  The test case deals with a biconvex parabolic
 airfoil ,  with thickness ratio 0 ? 2 ,  at  M ̀  5  0 ? 82 .  Since the concept of modified density has
 been widely investigated in the past within the framework of the finite-element
 method ,  a finite-element solution for the full-potential equation is used as reference
 result (Kinney 1989) .  The pressure coef ficient distribution presents a shock discon-
 tinuity ,  which appears sharper for the integral solution .  The agreement is good for both
 formulations ,  even if the artificial compressibility approach presents a slight overes-
 timation of the pressure distribution in the vicinity of the shock .  Furthermore ,  the
 latter approach ,  which is nonlinear ,  presents a slower convergence of the iteration to
 the steady state ,  as shown in Figure 18 .  Note that in both cases we used  m  ( M ) as in
 equation (15) with  l  5  100 and  M 0  5  1 .
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 Figure 16 .  Comparison of the shock position extrapolated for  h  5  0 with a fine grid ,  finite-volume
 solution .

 6 . 6 .  G RID  I NDEPENDENCE

 As already mentioned ,  the boundary integral formulation presents several features
 particularly appealing for design applications .  In the present paper we would like to
 emphasize that the solution of the method appears to be almost independent of the
 geometry of the grid built around the body in order to evaluate the nonlinear field
 source of equation (9) .  This is true also in the transonic range ,  where other
 methodologies are usually very sensitive to small perturbations of the grid geometry .

 Figures 19 and 20 present some preliminary results obtained for a NACA 0012 airfoil
 in transonic regime ( M ̀  5  0 ? 82) .  The pressure distribution along the chord is evaluated
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 Figure 17 .  Influence of artificial dissipation schemes .  Pressure coef ficient distribution on a biconvex
 parabolic airfoil with 20% thickness ,  at  M ̀  5  0 ? 82 ,  and angle of attack  a  5  0 8 :  — s — ,  present method with

 artificial density ;  — d — ,  present method with artificial mass generation ;  —— ,  finite-element solution .
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 Figure 18 .  Time history of the iterative procedure for the convergence of  s .  Test case of Figure 16 :  — s — ,
 present method with artificial density ;  — d — ,  present method with artificial mass generation .

 using four dif ferent field grids for the same configuration .  In particular ,  the results
 obtained with a body-fit grid constructed around the NACA 0012 airfoil ,  are compared
 to those obtained using the grids constructed ,  respectively ,  around NACA 0009 ,
 NACA 0010 ,  and NACA 0011 airfoils .  Not only the solution (Figure 19) ,  but also the
 convergence histories to the steady state (Figure 20) are virtually the same in the four
 cases .  This result yields interesting considerations for the application of the present
 formulation to the design process .  Indeed ,  the low sensitivity of the solution to the
 geometry of the field grid would allow the designer to modify the shape of the surface
 of the body without need for a re-evaluation of the geometry of the grid used for the
 aerodynamic numerical simulation .
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 Figure 19 .  Grid independence .  Pressure coef ficient distribution on a NACA 0012 airfoil ,  at  M ̀  5  0 ? 82 ,  and
 angle of attack  a  5  0 8 :  —— ,  field grid built around the NACA 0012 geometry ;  — h — ,  field grid built around
 a NACA 0011 ;  —  1  — ,  field grid built around a NACA 0010 ;  —  3  — ,  field grid built around a NACA 0009 .
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 Figure 20 .  Time history of the iterative procedure .  Test cases of Figure 18 (the meaning of symbols is the
 same as in that figure) .

 7 .  CONCLUDING REMARKS

 A boundary integral equation method for the analysis of two-dimensional steady
 transonic potential flows has been presented .  The formulation is obtained as the
 limiting case of the unsteady three-dimensional one ,  and the iterative method used to
 obtain steady-state results is a pseudo-time-accurate technique .  The emphasis has been
 posed on the validation of the methodology with respect to other numerical methods
 for the full-potential and (when applicable) Euler equations .  Comparisons with
 classical CFD methods reveal good agreement in both the subcritical and supercritical
 regimes .  Shocks ,  when they occur ,  are sharp and correctly located .  These are captured
 by means of the introduction of artificial dissipation in the supersonic region .  Dif ferent
 schemes for the artificial viscosity as well as dif ferent grid types are analysed and
 assessed .  The results of the convergence analysis are in very good agreement with
 accurate numerical results obtained with other numerical methods .  In particular ,  for
 subsonic nonlinear flows the integral solution converges to the solution of the Euler
 equation ,  whereas in supercritical flows the shock position extrapolated from the
 solutions of the present method converges to that predicted by a fine-grid solution of
 the full-potential equation obtained with the finite-volume code FLO36 .

 The methodology presents several characteristics which are of particular interest
 from the point of view of aeronautical design .  In particular ,  the formulation requires
 the discretization only of the portion of the fluid volume surrounding the body surface .
 Finally ,  the solution of the method is almost insensitive to modifications of the
 geometry of the field grid ;  this represents a highly desirable feature in those
 applications where repeated calculations are required ,  such as optimal design .
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